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Theoretical models for motionally driven spin diffusion are com- of quadrupolar order. All measured data nicely fit the theo-
pared and applied to spins S Å 1

2 and S Å 1. Their predictions are retical predictions.
quantitatively corroborated by experiments on a single crystal of When quadrupolar order instead of Zeeman order is stored
deuterated biphenyl. In this system, a molecular flip process drives during the mixing time of an exchange experiment, one often
spin diffusion and makes it strongly temperature dependent. In observes that its relaxation time T1Q is much shorter than
the second part, it is shown how spin diffusion of quadrupolar T1 . This phenomenon, which contradicts the common under-
order degenerates into cross relaxation. A single crystal of partially

standing of these relaxation times (5) , has not been ade-deuterated durene provides a clear-cut example of cross relaxation
quately dealt with in the literature. We will show that T1Q canin a dipolar coupled pair of spins S Å 1. This observation explains
be dominated by a cross-relaxation process which appears aswhy, in solids, the relaxation time of quadrupolar order, T1Q , is
a degenerate case of spin diffusion. The time constant ofoften much shorter than T1 . q 1997 Academic Press

this process is in the range of seconds to many tens of
seconds for deuterons. This is the same range as that of spin
diffusion. Therefore, it is only observed when T1 substan-

INTRODUCTION
tially exceeds this range. We present measurements on a
single crystal of partially deuterated durene that provide con-

In the past decade, measurements of molecular dynamics spicuous evidence of this phenomenon.
by 1D or 2D exchange NMR have progressed to longer and
longer correlation times (1) , and they have reached the point

TEMPERATURE DEPENDENCE OF SPIN DIFFUSION
where spin diffusion becomes a major concern. This is due
to the long understood fact that spin diffusion and chemical Basic Theory of Motionally Driven Spin Diffusion
exchange lead to the same features in 2D and other exchange

Spins S Å 1
2 . We first consider a system of two spins Sexperiments (2) . There is therefore a need to discriminate

between these two processes that are of very different nature. Å 1
2 that are chemically shifted and dipolar coupled. Its Ham-

We have recently shown by experiments on a deuterated iltonian is given by
single crystal of biphenyl that spin diffusion may strongly
depend on the temperature of the sample (3) . As a conse- H Å v1S1z / v2S2z
quence, the measurement of the temperature dependence of,

/ D{2S1zS2z 0 1
2(S1/S20 / S10S2/)} [1]say, 2D spectra provides no reliable criterion to distinguish

spin diffusion from thermally activated chemical exchange.
In the discussion of those experiments, we mostly relied on where v1 , v2 and D are the two chemical shifts and the
analogies with proton-driven spin diffusion (2) and intuitive strength of the dipolar coupling. To calculate the spin diffu-
arguments. In a recent review article on spin diffusion (4) , sion rate in this system, we start from a state of pure polariza-
Meier discussed, using a two-spin model, the possibility of tion,
motionally driven spin diffusion without, however, provid-
ing experimental evidence. In this article, we return to his r(0) Å xS1z / yS2z

two-spin model and compare it with a more realistic three-
spin model to show that the former is fully satisfactory. We Å x / y

2
(S1z / S2z) /

x 0 y

2
(S1z 0 S2z) [2]

then apply it to deuterons, i.e., spins S Å 1, and justify our
intuitive reasoning in (3) . Experiments on a single crystal
of deuterated biphenyl (3) have meanwhile been extended with arbitrary amounts x and y of single-spin polarization.

Because S1z / S2z commutes with H, only the componentto lower temperatures and now also include spin diffusion
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67SPIN DIFFUSION AND CROSS RELAXATION IN SOLIDS

S1z 0 S2z of the density matrix is affected by the magnetic
interaction. Therefore, we can specialize to the case

r(0) Å S1z 0 S2z . [3]

The evolution of this density matrix is limited to a three-
dimensional subspace of the full Liouville space (4) . This
subspace is spanned by the basis operators

O1 Å S1z 0 S2z ,

O2 Å S1/S20 0 S10S2/ ,

O3 Å S1/S20 / S10S2/ . [4] FIG. 1. Two models for motionally driven spin diffusion and their
spectra in the slow-motion limit. (a) Two spin S Å 1

2 nuclei with dipolar
coupling D and individual chemical shifts. Spin 2 fluctuates at a rate kThe density matrix is thus given at any time by r( t) Å
between two equilibrium positions with chemical shifts v2 and v*

2 . (b)a1( t)O1 / a2( t)O2 / a3( t)O3 . The Liouville equation
Three nuclei with two different dipolar couplings and individual chemical
shifts. Nuclei 2 and 3 exchange at a rate k . The dipolar coupling is disre-
garded in the representation of the spectra.rh Å 0i[ H, r] [5]

in the basis of Eq. [4] transforms to a linear differential
equation auh Å Aau for the vector au ( t) Å [a1( t) , a2( t) , a3( t)]

where D* Å v1 0 v*2 . Calculating the spin-diffusion ratewith the matrix
in this system means calculating the decay rate of the polar-
ization difference of the average of the two states, i.e., the
expectation value »O1 / O*1 … . For D Å 0, O1 / O*1 is anA Å 0iF 0 D 0

D 0 D
0 D 0

G , [6]
eigenvector of the system and its eigenvalue l is zero. If D
is small ( in a sense we will state below), O1 / O*1 is still
approximately an eigenvector, and we may expand the eigen-

where D Å v1 0 v2 is the chemical-shift difference of the value l as a power series of D ,
two nuclei. The solution of this system of equations shows
a characteristic zero-quantum oscillation of the expectation

l Å aD / bD 2 / cD 3 / O(D 4) . [8]value »S1 0 S2 … (4) . It will decay only when a broadening
effect is added to the two-spin interaction. We first follow
Meier (4) in the description of the broadening introduced Insertion of Eq. [8] into the characteristic polynomial of A ,
by a motional process. Let us assume that the resonance and setting this polynomial to zero, yields the coefficients
frequency of the second nucleus is not constant in time but a , b , and c . The solution found with the help of computer
fluctuates erratically with a rate k between the values v2 and algebra is
v*2 . This can happen, for example, by a molecular jump
process between two sites with different chemical shifts, a
situation depicted in Fig. 1a. It is described in a composite l Å 0k(D* 0 D)2D 2

2D 2D*2 / 2(D / D*)2k 2 / O(D 4) . [9]
Liouville space (4, 7, 8) representing a coupled spin pair
alternating between two states defined by parameters (v1 ,
v2 , D) and (v1 , v*2 , D) , respectively. (For simplicity, we For D small, the decay of »O1 / O*1 … is almost single expo-
assume that the dipolar coupling strength D is the same in nential, and 0l can therefore be identified with the spin-
both states.) In the basis O1 , O2 , O3 , O*1 , O*2 , O*3 , where diffusion rate. Note, however, that D small means D ! D,
the starred operators apply to the second state, the matrix A D*, (D /D*)/2. This means that the dipolar coupling must
for the linear differential equation is written be small compared to the chemical-shift differences D and

D* in the slow-motion limit and also small compared to
the averaged chemical-shift difference (D / D*)/2, which
applies to the fast-motion limit. The spin-diffusion rate found
in this way agrees with Meier’s results for the slow- andAÅ

0k 0iD 0 k
0iD 0k 0iD k

0 0iD 0k k
k 0k 0iD 0

k 0iD 0k 0iD*
k 0 0iD* 0k

, [7]
fast-motion limits, k ! ÉD* 0 DÉ and k @ ÉD* 0 DÉ,
but in addition covers the whole range of rates k . For an
interpretation of Eq. [9] , we specialize to the case D* @ D
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68 MÜLLER, ZIMMERMANN, AND HAEBERLEN

@ D . A schematic spectrum for this case is shown in Fig. We begin the calculation of the spin-diffusion rate in this
system by noting that r(0) is a linear combination of S1z /1a. In this limit, the spin-diffusion rate is

S2z / S3z , O1 Å
1√
3

(2S1z 0 S2z 0 S3z) , and O4 Å S3z 0 S2z1
TSD

Å 1
2

D 2k

D 2 / k 2 . [10]
for all values of the coefficients x , y , and z . All these terms
are conserved under the Zeeman interaction, but they differ
in their behavior under the dipolar interaction and the ex-We conclude that, for slow exchange (k ! D) , the spin-
change. The overall polarization S1z / S2z / S3z is conserveddiffusion rate is proportional, on the one hand, to the ex-
under both of them, whereas O4 decays under the influencechange rate k and, on the other, to the inverse square of the
of the exchange. This is expressed by the term k(P23 0 1)O4smaller of the chemical-shift differences. According to the
Å 02kO4 in Eq. [12] that leads to an exponentially decayinggeneral theory of spin diffusion (4, 9) , the D dependence
expectation value »O4 … , the rate of decay being 2k . O1 , onof 1/TSD, Eq. [10], reflects a Lorentzian broadening of the
the other hand, is conserved by the exchange, because k(P23zero-quantum (DM Å 0) transition that exists in the two-
0 1)O1 Å 0. Only the combined action of the exchange andspin system with S Å 1

2. The lineshape of this transition is
the dipolar couplings makes the expectation value of O1

decay slowly. This decay is the spin-diffusion process we
g(D) Å k

2(D 2 / k 2)
. are interested in.

For vanishing dipolar couplings, O1 is an eigenvector with
eigenvalue 0. For nonvanishing dipolar couplings, we again

A molecular motion process in a real solid usually differs expand this eigenvalue l as a power series of D and D* that
from our model in so far as there are not two states for one is inserted into the characteristic polynomial of the system.
nucleus but two nuclei exchanging their environment. This By setting this polynomial equal to zero, we find by com-
can be modeled by a three-spin system with two different puter algebra
dipolar couplings D and D * as depicted in Fig. 1b. In an
extension of the model discussed above, we undertake to

l Å 0 3
4

(DD13 0 D *D12) 2k

D 2
12D

2
13 / k 2(D12 / D13) 2find the spin-diffusion rate in this system analytically. The

Hamiltonian H Å HZ / H 12
D / H 13

D with three independent
/ O( \D , D* \ 3) , [13]chemical shifts v1 , v2 , v3 and two dipolar couplings D and

D * is straightforward. The dipolar coupling H 23
D between the

where Dij Å vi 0 vj . Note that Eq. [13] predicts l Å 0exchanging nuclei is not relevant. The full Liouville space
for D /D * Å D12 /D13 which implies that spin diffusion isof this system has dimension 64 and the relevant subspace
suppressed for this special situation. This statement is truewhere spin dynamics happens starting from any initial condi-
even if the cubic terms in D , D* are included in Eq. [13].tion r(0) with an arbitrary amount of polarization on each
If, however, D13 @ D12 and D and D* are of similar size,nucleus,
Eq. [13] reduces to

r(0) Å xS1z / y S2z / zS3z , [11]

l Å 0 3
4

D 2k

D 2
12 / k 2 S1 / OSD12

D13
D2Dhas still dimension 16, disregarding the constant of the mo-

tion S1z / S2z / S3z . An appropriate basis Oi of this subspace
and the commutators of this basis with the different parts of / O( \D , D* \ 3) . [14]
the Hamiltonian are given in the Appendix. Spin dynamics
is described by the Liouville equation plus an exchange con- Equation [14] says that only the dipolar coupling of the pair
tribution represented by the permutation operator P23 for of nuclei with the smaller of the chemical-shift differences
nuclei 2 and 3. Thus, the full equation of motion is is relevant, as we have intuitively argued in (3) . It can also

be seen that the result is the same as in the two-spin model
discussed above except for a factor of 3

2 by which the spin-rh Å 0i[ H, r] / k(P23 0 1)r . [12]
diffusion rate is enhanced in the more realistic model. The
simplified model is thus nicely confirmed as a valuable toolThe action of P23 on the basis operators Oi is trivial because
for calculations of this kind. In the next section, we shallit reduces to the permutation of the indices 2 and 3. Using
use it for the more involved case of spin S Å 1 nuclei.the commutators in the Appendix and the definition of P23 ,

the equation of motion can again be transformed to a linear Spins S Å 1. In this section, we consider a dipolar-cou-
pled system of two nuclei with spins S Å 1 that also experi-differential equation for the coefficients of the Oi with a

matrix that we spare the reader. ence, in addition to the Zeeman interaction with the static
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69SPIN DIFFUSION AND CROSS RELAXATION IN SOLIDS

order, also named alignment, described by (S2
z 0 2

31). First, we
consider the case where both nuclei carry different amounts of
Zeeman order. Invoking the same arguments as we did for spins
S Å 1

2, we can restrict ourselves to the special case

r(0) Å S1z 0 S2z . [16]

Starting from this state, the density matrix evolves under
the influence of the Hamiltonian [15] in a 7-dimensional
subspace of the full Liouville space. A possible basis of this
subspace is

O1Å S1z0 S2z , O2Å S1/S20 0 S10S2/ ,

O3Å S1z(S1/S20 / S10S2/) , O4Å (S1/S20 / S10S2/)S2z ,

O5Å (S1zS2z/ 2
31)O1 , O6Å S1zO2S2z ,

O7Å S 2
1/S 2

20 0 S 2
10S 2

2/ . [17]

This choice of basis is convenient for a start, but shortly
it will turn out that it is in no way optimal. The relevant
polarization difference O1 is orthogonal to all other basis
operators which are, however, not orthogonal among them-
selves. The commutators of the quadrupolar part of the Ham-
iltonian with the basis operators are

FIG. 2. Energy level diagram of two spins S Å 1 including a common
Zeeman interaction, individual quadrupole interactions, and a weak dipolar [ HQ, O1] Å 0
interaction. There are zero-quantum transitions (DM Å 0) in the MZ Å 0
and MZ Å {1 Zeeman levels. The quadrupole splitting of the MZ Å {1 [ HQ, O2] Å 0DO2 / (S / D)O3 / (D 0 S)O4
Zeeman levels is given by the difference D of the individual quadrupole
interactions, whereas the splitting of the MZ Å 0 Zeeman level is given by [ HQ, O3] Å SO3 / (D 0 S)O6
their sum S.

[ HQ, O4] Å 0SO4 / (S / D)O6

[ HQ, O5] Å 0 [ HQ, O6] Å DO6

magnetic field, a quadrupolar interaction with the local elec-
[ HQ, O7] Å 0, [18]tric-field gradients. The high-field Hamiltonian in the rotat-

ing frame is
where D Å vQ,1 0 vQ,2 and S Å vQ,1 / vQ,2 . The commuta-
tors with the dipolar part of the Hamiltonian areH Å HQ / HD

Å vQ,1 (S 2
1z 0 2

31) / vQ,2 (S 2
2z 0 2

31)
[ HD , O1] Å O2

/ D{2S1zS2z 0 1
2(S1/S20 / S10S2/)}, [15]

[ HD , O2] Å 8
3O1 0 2O3 / 2O4 / 2O5

where vQ,1 and vQ,2 are the quadrupolar frequencies of nuclei [ HD , O3] Å 4
3O1 0 2O3 / O5 / 2O6 / 1

2O7
1 and 2 and D is again the dipolar coupling strength (6) .

[ HD , O4] Å 4
3O1 / 2O4 / O5 0 2O6 0 1

2O7Diagonalization of this Hamiltonian (10) leads to the energy
level diagram of Fig. 2. From the commutation relation [ HZ ,

[ HD , O5] Å 2
3O2 0 O3 0 O4 / 2O6HD]Å 0, it is clear that spin dynamics induced by the dipolar

coupling is limited to DM Å 0 transitions. Inspection of Fig. [ HD , O6] Å 2
3O1 / 2O5

2 shows several such zero-quantum transitions within the
[ HD , O7] Å 2O3 0 2O4 , [19]MZ Å {1 and MZ Å 0 Zeeman levels which are relevant for

spin diffusion (2) .
Spins with S Å 1 permit two kinds of spin order, namely where the common factor D has been dropped on all right-

hand sides. Using these relations we are led to a linear differ-Zeeman order or polarization described by Sz , and quadrupolar
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70 MÜLLER, ZIMMERMANN, AND HAEBERLEN

ential equation for the expansion coefficients of r( t) as in Our aim is to deduce an expression for motionally driven
spin diffusion. For this purpose, we return to the model ofthe previous examples. The system matrix A is neither sym-

metric nor very informative. However, after the basis trans- a fluctuating interaction strength in a two-spin system. In
this model, the quadrupolar coupling of the second nucleusformation
is erratically switched between the values vQ,2 and v*Q,2 at
a rate k . Equivalently speaking, the frequency difference isO *1Å 1

3O1/O5 , O*2Å 1
2(O20O30O4)/O6 ,

switched from D to D* and the sum from S to S*. The
O *3Å01

2(O20O30O4) , O *4ÅO40O6 , general situation is quite involved. Therefore, we consider
a specific situation where the frequencies vQ,1 , vQ,2 , v*Q,2 ,

O *5ÅO30O6 , O *6Å 2
3O10O5 , [20] are related as follows \vQ,1É0 ÉvQ,2\ ! ÉvQ,1É, ÉvQ,2É, \vQ,1É

0 Év*Q,2 \, \vQ,2É 0 Év*Q,2 \. This situation is shown schemati-O *7Å 1
2O7 ,

cally in Fig. 3a. It includes the two cases of prime interest
vQ,1 É vQ,2 and vQ,1 É 0vQ,2 . As mentioned before, spinwe find the skew-hermitian (A† Å 0A) and block-diagonal
diffusion proceeds in the first case in the 3 1 3 block andsystem matrix
affects 1

3 of the polarization difference. The description is
the same as in Eq. [7] and yields the result of Eq. [10] with
D 2 replaced by 4D 2 . Therefore, the spin-diffusion rate is in
the case vQ,1 É vQ,2

A *Å0i

0 2D 0
2D 0 D
0 D 0

0S* 0 D 0D
0 S* D D
D D 0 0
0D D 0 0

, [21]
1

TZ
SD

Å 1
3

2D 2k

D 2 / k 2 . [22]

The index Z indicates that this expression applies to the
diffusion of Zeeman order or polarization. In the secondwhere S* Å vQ,1 / vQ,2 0 2D Å S 0 2D and D Å vQ,1 0

vQ,2 . The two blocks have a simple physical interpretation. case of interest, vQ,1 É 0vQ,2 , spin diffusion exclusively
happens in the 4 1 4 block and affects 2

3 of the polarizationThe 3 1 3 block is equivalent to a system of two spins S
Å 1

2 with a doubled dipolar coupling (see Eq. [6]) . It de- difference. The description is analogous to that of the former
case and leads to the matrixscribes the spin dynamics within the Mz Å{1 Zeeman levels

A Å

iS* 0 k 0 0iD iD k
0 0iS* 0 k 0iD 0iD k
0iD 0iD 0k 0 k
iD 0iD 0 0k k
k iS** 0 k 0 0iD iD

k 0 0iS** 0 k 0iD 0iD
k 0iD 0iD 0k 0

k iD 0iD 0 0k

. [23]

of Fig. 2. The 4 1 4 block describes the spin dynamics The relevant eigenvalue close to zero is
within the MZ Å 0 Zeeman level. A different presentation
of this decomposition can be found in (2) . The basis trans-

l Å 0k(S 0 S*)2 0 i
√
(S / S*)2(4k 2 / SS*)2

S 2S*2 / k 2(S / S*)2formation given in Eq. [20] tells us that the relevant polar-
ization difference O1 lives in the 3 1 3 block with 1

3 and in
1 D 2 / O(D 4) . [24]the 4 1 4 block with 2

3 of its overall expectation value. Suter
et al. have shown that proton-driven spin diffusion becomes
fast in the 3 1 3 block when D is small, and in the 4 1 4 The imaginary part of this eigenvalue reflects the fact that

the isolated 4 1 4 block has no constant of the motion whichblock when S is small. This means that, regardless of the
relative signs of vQ,1 and vQ,2 , spin diffusion becomes fast means that the full initial polarization difference oscillates

(very slowly) between negative and positive values. Thiswhenever in the spectrum the resonance lines of the two
spins come close to each other. oscillation is not interesting for the matter of spin diffusion,
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71SPIN DIFFUSION AND CROSS RELAXATION IN SOLIDS

O1 Å (S 2
1z 0 2

31) / (S 2
2z 0 2

31)

O2 Å 1
2{S1z(S1/S20 0 S10S2/) 0 (S1/S20 0 S10S2/)S2z}

O3 Å 01
2{S1z(S1/S20 0 S10S2/)

/ (S1/S20 0 S10S2/)S2z}

0 S1z(S1/S20 / S10S2/)S2z

O4 Å 1
2(S 2

1/S 2
20 / S 2

10S 2
2/) 0 S1zS2z

0 3(S 2
1z 0 2

31)(S 2
2z 0 2

31)

O5 Å S 2
1z 0 S 2

2z

O6 Å 1
2{S1z(S1/S20 0 S10S2/) / (S1/S20 0 S10S2/)S2zFIG. 3. Frequency relations of three spins SÅ 1 with individual quadru-

pole interactions. (a) A situation where one frequency difference is much 0 (S1/S20 / S10S2/)}smaller than all others; the spin-diffusion problem has a simple solution.
(b) A case where spin diffusion becomes more difficult to treat, and for O7 Å S1z(S1/S20 / S10S2/)S2zquadrupolar order even degenerates into cross relaxation.

0 1
2{S1z(S1/S20 0 S10S2/)

0 (S1/S20 0 S10S2/)S2z}

and in a real system, it will usually be suppressed by addi- / 1
2(S1/S20 / S10S2/) , [27]

tional broadening effects. The spin-diffusion rate caused by
the motional driving is given by 2

3 times the real part of this because it leads to a Liouvillian A which immediately ap-
eigenvalue and for S* @ S simplifies to pears in the block structure already found for Zeeman order

in Eq. [21],

1
TZ

SD

Å 2
3

D 2k

S 2 / k 2 . [25]

AÅ0i

0 2D 0 0
2D 0 S* 2D
0 S* 0 0
0 2D 0 0

0 2D 0
2D 0 D
0 D 0

. [28]
Thus, we find that motionally driven spin diffusion of Zee-
man order is independent of the relative signs of vQ,1 and
vQ,2 , as is proton-driven spin diffusion (2) . Except for a
scaling factor on the order of one, the spin-diffusion rate

The decisive difference to Zeeman order is that the sum ofcan be obtained formally from Suter’s results (2) by replac-
quadrupolar spin orders, i.e., O1 , is not a constant of theing the relaxation rate 1/TZ QT

2 of the zero-quantum coher-
motion, but evolves in the 4 1 4 block of the matrix andence by the exchange rate k as we have intuitively argued
thus in the MZ Å 0 Zeeman levels of Fig. 2. Therefore, itin (3) . The exact value of the scaling factor is model depen-
may decay and lead to new features of spin diffusion (2) .dent as can be seen from a comparison of the two-spin and
The difference of quadrupolar spin orders, O5 , on the otherthree-spin models for spin S Å 1

2 nuclei discussed in the
hand, evolves in the 3 1 3 block. As Suter has pointed out,previous section.
this implies that quadrupolar order is efficiently transferredThe other possible spin order in an SÅ 1 system is quadru-
whenever ÉvQ,1É É ÉvQ,2É, with its sign conserved if vQ,1polar order. In a typical exchange experiment with storage
É vQ,2 , but with its sign reversed if vQ,1 É 0vQ,2 .of this order, the mixing period starts with

Motionally driven spin diffusion of quadrupolar order in
the 3 1 3 block of the matrix [28] shows the same behavior
as does that of Zeeman order. Because the full expectation

r(0) Å xSS 2
1z 0

2
3

1D / ySS 2
2z 0

2
3

1D , [26] value of the relevant operator, O5 , now decays in this block,
there is no factor of 1

3 and the spin-diffusion rate of quadrupo-
lar order is three times faster than that of Zeeman order. For
D* @ D, we findwhere x and y may have arbitrary values. Under the influence

of the Hamiltonian of Eq. [15], the density matrix evolves
again in a 7-dimensional subspace of the full Liouville space. 1

TQD
SD

Å 2D 2k

D 2 / k 2 Å g(D)4D 2 . [29]
A suitable basis for this subspace is
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72 MÜLLER, ZIMMERMANN, AND HAEBERLEN

The superscript QD reminds us that this is the decay rate
of the difference of the quadrupolar orders of the two spins,
which is the rate at which quadrupolar order is transferred
from one spin to the other with its sign conserved. The
formula shows that this rate becomes fast when vQ,1 É vQ,2 .
Note that this equation coincides with Eq. [10] if the factor
4 introduced by the doubling of the effective dipolar cou-
pling is disregarded. This is because the lineshape factor
g(D) in both cases stems from the same exchange process.

The 4 1 4 block can be treated in analogy to Eq. [23].
The treatment is, however, somewhat more involved because
the resulting matrix has not only one eigenvalue l close to
zero but another one that is exactly zero. An inspection of
the corresponding eigenvectors shows that in the limit D !
S one-half of the expectation value of O1 is conserved and
the second half decays with a rate 0l. Therefore, in an

FIG. 4. The biphenyl molecule and its hydrogen sites. The phenyl rings‘‘initial slope’’ view, the spin diffusion rate is 0l /2. Not
undergo 1807 flips about the long molecular axis and thus the hydrogensvery surprisingly, we find in the limit S* @ S
3, 4, 5 locally form an experimental realization of the model in Fig. 1b
with spins S Å 1. For an appropriate crystal orientation, the spectrum
corresponds to the frequency relations of Fig. 3a, see text.1

TQS
SD

Å 2D 2k

S 2 / k 2 Å g(S)4D 2 . [30]

Here the superscript QS indicates that the formula gives the
obtained from a crystal oriented such that the magnetic field

decay rate of the sum of the quadrupolar orders of the two
Bt 0 was in the monoclinic plane. The assignment of the line

spins, i.e., the rate at which quadrupolar order is transferred
pairs to the different deuteron sites is indicated by the label-

from one spin to the other with its sign reversed. This rate
ing of the deuterons. The symmetry relations that reduce the

becomes fast when vQ,1 É 0vQ,2 .
spectrum to three pairs of lines have been given in (3) .

We conclude that all spin-diffusion rates are independent
In the crystal, the molecules undergo thermally activated

of the relative sign of the quadrupolar couplings involved
1807 flips about their long axes (3, 15) . This flip process

and that motionally driven spin diffusion is three times faster
exchanges deuteron 3 with deuteron 5 and deuteron 2 with

for quadrupolar order than for Zeeman order. This theoretical
deuteron 6, but leaves the para deuteron 4 unaffected. Thus,

factor of 3 was also derived for proton-driven spin diffusion
the para deuteron and its neighborhood is a close realization

(2) . It is, in fact, independent of the actual driving process
of the model of Fig. 1b. The fact that a given para deuteron

considered.
has dipolar couplings not only to the deuterons 2 and 5 (and

The results obtained so far apply to the frequency relations
3 and 6) of its ‘‘own’’ molecule, but to other inversion-

in Fig. 3a because the relations D*, S*, S @ D @ D or D*,
symmetry and translation-symmetry equivalent deuterons as

S*, D @ S @ D were assumed to hold, and spin diffusion
well, makes the quantification of the model parameter D

is therefore limited to either the 3 1 3 or the 4 1 4 block
(dipolar coupling strength) somewhat ambiguous (3) .

of the relevant matrices in Eqs. [21] and [28]. We can easily
Therefore, we do not attempt to determine D from the struc-

conceive a situation where spin diffusion appears simultane-
ture of biphenyl and restrict ourselves to noting that dipolar

ously in both blocks. An example is given in Fig. 3b. In
couplings of neighboring deuterons in organic solids are

such a situation, spin diffusion of Zeeman order gets faster
usually in the range of a few hundred radians per second.

by up to a factor of 2. Quadrupolar order, however, is no
In 1D and 2D exchange experiments, a polarization transfer

longer transferred between the spins but decays for both of
from (and to) deuteron 4 to (and from) deuterons 2, 3, 5,

them as the result of a cross-relaxation process. The general
and 6 can be observed (3) . This polarization transfer occurs

features of this cross-relaxation process will be discussed
on a time scale of 1rrr10 s, and we remind the reader

later in this article. The experimental system dealt with in
that this is exactly the spin-diffusion process treated in the

the next section fits Fig. 3a, and therefore the theory devel-
previous section.

oped so far should be and, as we shall see, is fully applicable.
An interpretation of the observed polarization transfer by

a chemical-exchange process is evidently out of the question:Experimental System: Biphenyl
it would require a breaking and reforming of covalent bonds.
That the observed polarization transfer is caused by spinThe biphenyl molecule is shown in Fig. 4 together with

a single-crystal deuteron NMR spectrum. The spectrum was diffusion can be confirmed by a measurement of the transfer

AID JMR 1132 / 6j19$$$124 04-29-97 09:00:47 maga



73SPIN DIFFUSION AND CROSS RELAXATION IN SOLIDS

FIG. 5. The offset dependence of the exchange rate between line 4 and line 3, 6 and two spectra for slightly different crystal orientations. This offset
dependence rules out a chemical exchange and fits the model of spin diffusion driven by the 1807-flip process.

rate as a function of the spectral line separation. A conve- upper spectrum in Fig. 5 in a larger temperature range than
published previously (3) . As we shall see presently, thisnient, direct, and time-saving method of measuring the trans-

fer rate has been described in (3, 13) . In the spectrum of range now includes temperatures where the flip process is
frozen out and has become ineffective for driving spin diffu-Fig. 4, the resonance lines 4 and 3, 6 are closely spaced.

Because we know the crystal orientation and have previously sion. In addition, we repeated the measurements of Ermark
(15) of the temperature dependence of the rate k of themeasured the deuteron quadrupole coupling tensors in biphe-

nyl (14) , we can tell that the quadrupole splittings 2vQ,3,6 1807-flip process by 2D exchange NMR. The results for the
and 2vQ,4 have equal signs in Fig. 4. This means that D Å temperature dependences of k , 1/TZ

SD, and 1/TQ
SD are plotted

vQ,3,60 vQ,4 Å 2p1 6.2 kHz and that the frequency relations in Fig. 6. The solid lines in these plots correspond to the
in this spectrum correspond to those of Fig. 3a. Because the following functions, which are evidently good fits to the
flip rate k around and slightly above room temperature is measured data,
small compared with D, we expect from Eq. [22] a 1/D 2

dependence of the polarization transfer or spin-diffusion rate k Å 2.3 1 1017 s01
rexp(0Ea /kT )

1/TSD. We carried out an experiment at T Å 315 K, where
k Å 3900 s01 . We varied D from 2p 1 6.2 to 2p 1 23.5 1

TQ
SD

Å 0.023 s01 / 1.2 1 1014 s01
rexp(0Ea /kT )

kHz by rotating the crystal in the applied field, and measured
1/TSD by the method described in (3) . A rotation angle of
no more than 57 was sufficient to scan D in the indicated 1

TZ
SD

Å 0.018 s01 / 4.0 1 1013 s01
rexp(0Ea /kT ) [31]

range. This angle is small enough to allow us to neglect any
variation of the dipolar coupling strengths in this experiment.

The variation of the spin-diffusion rate 1/TZ
SD for Zeeman with Ea Å 83 kJ mol01 . The 1807-flip process obviously

order together with the spectra corresponding to the end follows very well an Arrhenius behavior, whereas the spin-
points of the range of D scanned in this experiment are diffusion rates show an additional constant contribution,
shown in Fig. 5. The solid line, which is obviously a good which has a time constant of close to one minute. This
fit to the data, represents a function const /D 2 . This confirms constant contribution is remarkably slow. It is ordinary spin
nicely the predicted D dependence of 1/TZ

SD. At the same diffusion driven by more or less temperature-independent
time, the data in Fig. 5 support our claim that the observed processes and can be considered to be typical for perdeuter-
spin-diffusion process is driven by the molecular 1807-flip ated crystals without significant molecular motions. The tem-
process. To further support this statement, we also measured perature-dependent part, on the other hand, shows the same
the temperature dependence of the spin-diffusion rate for activation energy as the 1807-flip process with the preexpo-
Zeeman order, 1/TZ

SD, and that of the quadrupolar order, nential factor three times larger for quadrupolar order than
for Zeeman order. Because k ! D in the covered temperature1/TQ

SD, for the crystal orientation that corresponds to the
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spins S Å 1 is not conserved under dipolar coupling. The
smaller S Å vQ1 / vQ2 is, the faster is the decay of the
sum of the quadrupolar orders of Eq. [30]. This transfer of
quadrupolar order involves an inversion of its sign (2) . On
the other hand, the difference of quadrupolar orders decays
rapidly when D Å vQ,1 0 vQ,2 is small. These two cases are
well separated whenever either D ! S or S ! D. These
conditions are equivalent to ÉDÉ ! ÉvQ,1É, ÉvQ,2É and ÉSÉ
! ÉvQ,1É, ÉvQ,2É, respectively. If, however, either vQ,1 Å 0
or vQ,2 Å 0, we have ÉSÉ Å ÉDÉ. According to Eqs. [29]
and [30], the decay rate of the sum of the single-spin quadru-
polar orders becomes equal to that of their difference. A
decay of the sum and of the difference of the quadrupolar
orders with the same rate simply means that the quadrupolar
orders of both spins decay independently of each other. This
is shown by the following relation for the first nucleus

2KS 2
1z 0

2
3

1L
(t )

Å »O1 … (t ) / »O5 … (t )FIG. 6. Temperature dependence of the rate of the 1807-flip process and
spin diffusion for a fixed crystal orientation of biphenyl. At the high end of the
temperature range, the spin-diffusion rate is proportional to the rate of the driving
flip process. At the low end, where the flip process is frozen out, spin diffusion Å »O1 … (0)expS 0t

TQS
SD
Dbecomes temperature independent and slow. The high-temperature behavior,

where spin diffusion is three times faster for quadrupolar than for Zeeman order,
is in quantitative agreement with the theoretical prediction.

/ »O5 … (0)expS0 t

TQD
SD
D

range, this is in excellent agreement with the theory devel-
oped in the previous section. Note that the factor of 3 is lost
in the low-temperature range where the flip process is freez- Å 2rKS 2

1z 0
2
3

1L
(0)

expS 0t

TSD
D , [32]

ing out. In his experiments on malonic acid-d4 , Suter already
observed a factor smaller than 3 (2) . Note also that the
measured activation energy of the flip process is found to
be slightly higher than reported by Ermark (3, 15) but still for TQS

SD Å TQD
SD Å TSD. Spectral spin diffusion disappears in

this case and is replaced by a pure cross-relaxation phenome-within the relatively large error limits of those measure-
ments. According to Eqs. [22] and [29], the factor by which non. In most systems, however, if vQ,1 Å 0, the second

frequency vQ,2 will be fairly large so that cross relaxationthe spin-diffusion rates are lower than the rate k of the driv-
ing process can be used to calculate the effective dipolar is quite slow. The special cross-relaxation case vQ,1 Å 0 É

vQ,2 will therefore be rather rare.coupling D of deuterons 4 and 3. With D Å 2p 1 6.2 kHz,
taken directly from the spectrum, we find D Å 2p 1 107 An interesting special case appears, however, when the

spin pair is made up of two nuclei with equal quadrupolarHz. This fits well into the expected range of dipolar cou-
plings. Beyond providing a proof for the possibility of mo- interactions, vQ,1 Å vQ,2 . In this case, the difference of quad-

rupolar orders of both nuclei is completely irrelevant becausetional driving of spin diffusion, these results on biphenyl
demonstrate, at the low-temperature end of our measure- it can be neither excited nor detected. A decay of their sum,

on the other hand, does not correspond to any transfer ofments, how slow spin diffusion of deuterons can be in favor-
able cases, and at the high-temperature end, how fast spin spin order because the spectrum consists of only a single

pair of lines. In this special case, the decay of the sum ofdiffusion can get without any change in the dipolar coupling
strength, if there is an appropriate driving process. quadrupolar orders looks just like T1Q relaxation, but its true

nature is cross relaxation. Therefore, we will call its time
CROSS RELAXATION OF QUADRUPOLAR ORDER OF constant T*1Q. Quadrupolar order decays rapidly when S Å

COUPLED SPINS S Å 1 vQ,1 / vQ,2 Å 2vQ is small, i.e., when the quadrupolar split-
ting of the one observable pair of lines is small. Because it

Connection of Cross Relaxation and Spin Diffusion is just a degenerate case of spin diffusion, the expression
for this decay rate is the same as that for the spin-diffusionAs mentioned above, quadrupolar order differs from Zee-

man order in that the sum of the quadrupolar orders of two rate of Eq. [30], that is,
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1

T*1Q

Å 1
TQS

SD

Å g(S)4D 2 Å g(2vQ)4D 2 , [33]

where g(S) represents the lineshape of the zero-quantum
transition of the MZ Å 0 Zeeman level (Fig. 2) , taken at the
frequency of the quadrupolar splitting. In the case of mo-
tional driving (Eq. [30]) , this lineshape is Lorentzian, but
in general any lineshape is possible. In the next section, we
will present a system where the described cross-relaxation
process leads to dramatic effects. It will become clear that
the lifetime of quadrupolar order in solids often is not deter-
mined by genuine relaxation but by cross relaxation. This
explains why, in some systems, T1Q is much shorter than the
longitudinal relaxation time T1 .

Experimental System: Durene

Durene, 2,3,5,6-tetramethylbenzene, crystallizes in the
space group P21/a with two crystallographically equivalent
molecules in the unit cell. Each molecule has two magneti-
cally equivalent aromatic hydrogen sites. If only these sites

FIG. 8. Rotation pattern of vQ/2p of durene-d2 with the magnetic fieldare deuterated, two deuterons on neighboring molecules
in the monoclinic plane, and the corresponding relaxation times T1 and T1Q .

form a well-isolated pair with an interatomic distance of 2.9 At the points of zero quadrupole splitting, the lifetime of quadrupolar order
Å. This is shown in Fig. 7. Because their sites are related (L) drops in a resonant way and decouples completely from T1 (/) .
by an inversion symmetry, the two deuterons of the pair
have identical quadrupole interactions, vQ,1 Å vQ,2 Å vQ.

a specific exchange of the aromatic hydrogens of durene inTo observe the lifetime of the quadrupolar order of this pair
a mixture of CH3COOD and deuterium bromide (48%) inof deuterons as a function of vQ, we prepared durene-d2 by
D2O. The mixture was stirred at 907C for three days and the
durene was isolated after cooling to room temperature. After
a second exchange under identical conditions, the deutera-
tion of the aromatic hydrogens of durene was higher than
98% (according to liquid state 1H NMR). The durene-d2 so
obtained was recrystallized and purified by extensive zone
refining. Crystals of exceptional quality, as judged by the
planarity of natural growth planes and lack of visible disloca-
tions, were grown at room temperature by sublimation at
1001 torr in sealed planar glass vessels over several weeks.
One of these crystals was prepared as a sample for deuteron
NMR. It was oriented such that its monoclinic axis was
parallel to the rotation axis of the NMR goniometer. As a
consequence, for all rotation angles f the deuteron spectrum
of this crystal shows a single resonance split by the quadru-
polar interaction. The linewidth of about 1.5 kHz is domi-
nated by the dipolar interaction to the methyl protons. By
applying proton decoupling, the linewidth could be reduced
to 300–500 Hz, depending on the rotation angle. Using the
Jeener–Broekaert pulse sequence (18) , together with proton
decoupling in the evolution and detection periods, we can
create quadrupolar order and monitor its decay even for very

FIG. 7. In solid durene, partially deuterated at the aromatic sites, two small quadrupolar splittings 2vQ. The rotation pattern of vQneighboring deuterons form a well-isolated and dipolar-coupled pair of
is shown in Fig. 8 together with the corresponding lifetime ofequivalent spins S Å 1. As a consequence, quadrupolar order of these nuclei
quadrupolar order, T1Q , and some values of the longitudinaldecays by cross relaxation that is strongly dependent on the quadrupolar

splitting. relaxation time T1 . For most rotation angles, T1 and T1Q are
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on the order of several hundreds of seconds and differ only
little. Close to the orientations where the quadrupolar split-
ting vanishes, however, T1Q drops dramatically by several
orders of magnitude, whereas T1 remains long. This behavior
cannot be explained by the standard relaxation theory (5, 16)
which is a one-spin theory. The origin of the sharp drops of
T1Q is the cross-relaxation process discussed in the previous
section as a degenerate case of spin diffusion. The sharp
drops of T1Q are thus due to the two-spin character of the
system. This claim is further corroborated by the fact that,
in one of the respective crystal orientations, we were able
to record the well-known (16) multiple-quantum spectrum
of the system. This spectrum, which shows the zero-quantum
line responsible for cross relaxation, will not be discussed
in this article. In Fig. 9, the T1Q values of Fig. 8 are plotted FIG. 9. The lifetime of quadrupolar order in durene vs vQ/2p. For

large vQ/2p, the lifetime is dominated by genuine relaxation; for vQ/2pas a function of vQ/2p. The data are divided into two
small, it is dominated by cross relaxation. Each branch corresponds to onebranches, one for each of the two zero crossings of the
zero crossing of vQ in the rotation pattern of Fig. 8. The difference of bothquadrupole splitting occurring at f Å 537 and 1627 in the
branches is due to different strengths of the dipolar coupling in the respec-

rotation pattern of Fig. 8. The two solid curves of Fig. 9, tive crystal orientations.
which evidently are excellent fits to the experimental data,
follow the equations

be seen that g(2vQ) is neither Gaussian nor purely Lo-
rentzian. Only for vQ ú 2p 1 5 kHz, that is, far out in the

1
T1Q

(f É 537) Å 0.0025 s01

wings of the line, does the Lorentzian contribution g(2vQ)
Å A / [1/t 2/ (2vQ)2]É A / (2vQ)2 dominate. If it were fully/ 5.7S1.1 1 107

v 2
Q

/ 2 1 1016

v 4
Q

D s01 ,
applicable, the inverse quadratic term should be sufficient for
vQ much larger than 1/t, i.e., at least down to values of vQ

on the order of the visible linewidth. This is not what we
1

T1Q

(f É 1627) Å 0.0025 s01

find experimentally. Although the shape of g(2vQ) (neither
Lorentzian nor Gaussian nor a mixture thereof) is somewhat/ S1.1 1 107

v 2
Q

/ 2 1 1016

v 4
Q

D s01 .
surprising, it is not crucial to the nature of the cross-relax-
ation process described here.

In liquid crystals, T1 and T1Q are usually considerably[34]
shorter than the cross-relaxation time discussed here (5) .
Thus, cross relaxation can be ignored there. In solids withIt is clear that these diverging functions can describe 1/
long T1 , however, T1Q is often dominated by cross relaxation.T1Q(vQ) only as long as vQ is large in a sense we are going
It is therefore quite common that T1Q is much shorter thanto state below. It can be seen that the frequency-dependent
T1 . In the biphenyl spectrum of Fig. 4, for example, whereparts of both curves simply scale with a factor of 5.7. If we
the splitting of the 2, 5 pair of lines is rather small, wemake the reasonable assumption that g(2vQ) hardly depends
observed that the quadrupolar order not only is transferredon the crystal orientation, we may conclude from Eq. [33]
between the various nuclei, but also decays on a time scalethat this scaling factor must stem from a ratio of

√
5.7 É 2.4

which is much shorter than T1 . We further observed in biphe-of the dipolar couplings D for the two orientations. From
nyl that motional driving by the 1807 flip makes cross relax-the structural data for durene (17) , the dipolar coupling of
ation dependent on temperature in exactly the same way asthe aromatic pair of deuterons can be calculated to be about
it makes spin diffusion dependent on temperature.2p 1 115 Hz at f Å 1627 and about 2p 1 40 Hz at f Å

537. The ratio of these two numbers is 2.875 and thus fits
SUMMARY AND CONCLUSIONSreasonably well to the ratio of the decay rates. Equation [33]

suggests furthermore that the frequency-dependent parts of
Eqs. [34] give the shape g(2vQ) of the zero-quantum line We have shown experimentally, and elucidated by theoret-

ical models, that spectral spin diffusion can in fact beof the coupled deuteron pair. It is dominated by the dipolar
coupling to the methyl protons, because during the long (ú1 strongly temperature dependent, if it is motionally driven.

To discriminate between spin diffusion and a motional pro-s) mixing period of the Jeener–Broekaert pulse sequence,
proton-decoupling was (and had to be) switched off. It can cess as the source of an observed polarization transfer, the
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measurement of the temperature dependence of the latter is The transformation of these operators under the permutation
operator P23 is obvious. Their commutators with the fulltherefore an unsuitable approach. To accomplish this dis-

crimination safely, the dependence of the polarization trans- Zeeman Hamiltonian HZ are
fer rate on the spectral difference of the relevant resonances
must be checked in a single crystal study as is shown here [ HZ , O1] Å 0 [ HZ , O2] Å D12O3
for the example of biphenyl.

In the theoretical part, we showed that the spin-diffusion [ HZ , O3] Å D12O2 [ HZ , O4] Å 0
problem of three spins with S Å 1

2 as well as that of two
[ HZ , O5] Å D13O6 [ HZ , O6] Å D13O5coupled spins with S Å 1 can be treated by explicit construc-

tion of the density matrix in a basis of product operators. [ HZ , O7] Å D13O8 [ HZ , O8] Å D13O7
With the help of computer algebra the corresponding equa-

[ HZ , O9] Å D23O10 [ HZ , O10] Å D23O9tions can be solved.
In the same formalism, we also described the degeneration [ HZ , O11] Å D23O12 [ HZ , O12] Å D23O11of spin diffusion into cross relaxation. In the solid state, this

phenomenon affects quadrupolar order rather frequently and [ HZ , O13] Å D12O14 [ HZ , O14] Å D12O13

becomes evident as a considerable decrease of T1Q compared
[ HZ , O15] Å [ HZ , O16] Å 0,to T1 . A comparison of the two time constants, which can

be obtained experimentally rather easily, can thus be used
where Dij Å vi 0 vj is the chemical-shift difference of spinsto probe the time constant of spin diffusion in the system.
i and j . The commutators with the Hamiltonian of the dipolarIf T1Q is much shorter than T1 , spin diffusion of quadrupolar

order may be expected to proceed on the same time scale coupling of nuclei 1 and 2, H 12
D , are

as T1Q , whereas spin diffusion of Zeeman order will be
slower by a factor of 3. If, on the other hand, T1Q is on the

[ H 12
D , O1] Å

√
3
2 O2 [ H 12

D , O2] Å
√
3
2 O1 / 1

2O4order of T1 for all pairs of lines in a spectrum, the odds are
that the spin-diffusion time constants are also on the order

[ H 12
D , O3] Å 0 [ H 12

D , O4] Å 1
2O2of T1 .

[ H 12
D , O5] Å O7 / 1

2O11 [ H 12
D , O6] Å O8 / 1

2O12
APPENDIX

[ H 12
D , O7] Å O5 / 1

2O10 [ H 12
D , O8] Å O6 / 1

2O9The three-spin model depicted in Fig. 1b is described in
a rather large Liouville space of dimension 64. If at any

[ H 12
D , O9] Å O12 / 1

2O8 [ H 12
D , O10] Å O11 / 1

2O7moment the system is in a state of pure Zeeman polarization
according to Eq. [11], however, the spin dynamics is con-

[ H 12
D , O11] Å O10 / 1

2O5 [ H 12
D , O12] Å O9 / 1

2O6tained in a subspace of dimension 16. The projection of r(0)
on the constant of the motion S1z/ S2z/ S3z is conserved and

[ H 12
D , O13] Å 0 [ H 12

D , O14] Å
√
3
2 O16 0 1

2O15can thus be disregarded. An appropriate orthogonal basis
[Trace(O†i rOj) Å 4dij] of the relevant subspace is [ H 12

D , O15] Å 01
2O14 [ H 12

D , O16] Å
√
3
2 O14 ,

O1Å
1√
3

(2S1z0 S2z0 S3z) O2Å S1/S20 0 S10S2/ where the common factor of all right-hand sides, the dipolar
coupling strength D , was dropped for better readability.

O3Å S1/S20 / S10S2/ O4Å S3z0 S2z From these relations the commutators with the Hamiltonian
of the second dipolar coupling, H 13

D , can immediately beO5Å S1/S30 0 S10S3/ O6Å S1/S30 0 S10S3/
obtained using the symmetry relation

O7Å 2rS2zO6 O8Å 2rS2zO5

O9Å S2/S30 / S20S3/ O10Å S2/S30 0 S20S3/ [ H 13
D , Oi ] Å P23[ H 12

D , P23Oi ] . [35]

O11Å 2rS1zO9 O12Å 2rS1zO10
These commutation relations and the action of the permuta-

O13Å 2rS3zO3 O14Å 2rS3zO2 tion operator transform Eq. [12] to a linear differential equa-
tion for the expansion coefficients of the density matrix. AO15Å 2rS1z(S2z0 S3z)
power series expansion by computer algebra of the eigen-
value close to zero for small dipolar couplings D and D *O16Å

2√
3

(S1zS2z/ S1zS3z0 2S2zS3z) .
leads to the spin-diffusion rate of Eq. [13].
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